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MAIN BATTLE TANK FLEXIBLE GUN TUBE DISTURBANCE MODEL
THREE SEGMENT MODEL

Dr. Henry J. Sneck1

'U.S. Army Benet Labs, TACOM-ARDEC, Building #40, Watervliet, NY 12189-4050

A rational approach to disturbance rejection is proposed and
applied to a simple three-degree-of-freedom flexible gun tube
model using feedforward and feedback compensation. The first
two natural frequencies of the pin-free and cantilever tube are
matched by adjusting the dimensions of the rigid segments and
the stiffness of the torsional springs that join them. It was found
that, contrary to the previously analyzed two degree-of-freedom
segment model, the muzzle-end segment could be stabilized by
the proper choice of transfer functions and elevation driveline
response. The analysis serves to establish the requirements for
the transfer functions and stabilizing actuator systems.

INTRODUCTION

Modern tank cannon are long, relatively, thin, beam-like hollow cylinders. Their
accuracy is, in part, determined by their flexibility, especially under dynamic loading. Very
small deflections and rotations of the muzzle end can have a significant influence on the
accuracy of the shot at long ranges. Muzzle motions induced by firing are inevitable, and
difficult to control because of the time scale of the firing is of the order of milliseconds.

Another source of muzzle motion is the ground-induced motion of the vehicle. These
motions, transmitted through the trunnions and gun actuators, can be quite large and have
frequencies comparable to the natural frequencies of the tube. The time scales of these
disturbances depend on the tank speed and on the nature of the terrain. They are typically of the
order of seconds or longer. Sensing and actuation to control the influence of vehicle motion on
the muzzle response might be possible, given these relatively long time scales. This raises two
questions. First, is it possible to reject some, or all he ground motion disturbance from the
muzzle motion? In a previous paper [1] it was suggested that not all of the disturbance could be
rejected. Second, if the more comprehensive model used here indicates that all of the
disturbance can be rejected, what is the required control strategy?

During a discussion with Dr. Purdy, author of Reference [2], he suggested that the
fidelity of his two-segment flexible model, documented in Reference [1], was inadequate. He
recommended that the tube should be divided into at least three segments, with intervening
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torsional springs and dampers. The author is indebted to Dr. Purdy for this suggestion since this
paper is the result of his recommendation.

EQUATIONS OF MOTION

Figure 1 shows the generic model of the tube and the various quantities that determine its
dynamic behavior.

trunnion

hull

C.G '. FIGURE 1 GUN GENERIC MODEL

hull

A free body analysis of this model yields the classical dynamic equation,

[m] J+ [ c] 0o÷ J+ [k 0 (1)

The elements of the mass, damping, and stiffness 3 x 3 matrices are shown Appendix A.

Purdy [3] has shown that the tube motion can be adequately modeled if the segmented
model matches the pinned-free and cantilever frequencies of the mounted tube. Matching is
accomplished by adjusting the size of the rigid segments and the stiffness' of their connecting
torsional springs. The 2 x 2 matrices for the cantilever mode are given in Appendix B.

Transformation of Equation (1) into the frequency domain will allow its incorporation
into the control strategy. Taking the Laplace transform of Equation (1) yields:
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X, (S), F, F(s)

[a] (S) s y, (s) (2)Jaior~) { s62(s

192(s)J Jo(S)

The elements of [a] and [I] are listed in Appendix C. This equation relates the response
vector on the left to the disturbance vector on the right. These vectors also contain the actuator
force, F,, and the actuator displacement, xc, in addition to disturbances (s2yt(s), sOp(s), Op(s)) and
the responses 01(s), 02(s), 03(s).

I, (s)1 f, (s)1

/0(s) - [C] [I] 2s Y(s) ( (3)
02(s) det[a] sO'(s)

lO3(s)] J or(s) J

where [C] is the transpose of the numerators of the cofactors of [a]. The elements of [C] and det
[a] are listed in Appendix D.

The final step in the preparation of the dynamic equations is to perform the operation

dtI [C] [I] = [B] (4)det[a]

where the elements of [B] can be found in Appendix E.

The result of these straight forward, but laborious manipulations, is an equation for the
response to the disturbance in terms of the properties of the model contained in [B], i.e.,

(S) [B] s-y,(s)(5
02(s)i , lo(s)
03(S)J [ 0(s)

Of course it was known at the outset that Equation (1) could be put into this form. This
section merely provides the details of how this transformation is performed, and documents the
intermediate steps and their components.

FEEDBACK AND FEEDFORWARD CONTROL

The portion of the response due to the applied actuating force is
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x, (s) [B.1IQ(s) B21 F8=, =GP] F(
02(S) [ B31

03(s) [B41

where [Gp] is the "plant" transfer function.

The portion of the response due to the disturbance is

;r, (s [B12 B13  B14 iF (S
0,(s) 1 B23 B23 4  sOP(s) =[GdjID} (7)

03(s) B42  B43 B44- (

where [Gd1] is the disturbance transfer function and {D} is the disturbance vector.

{D} -

GCd Gd

1 I +

•- Gc I Gp ••,O

FIGURE 2 BLOCK DIAGRAM OF GUN TUBE SYSTEM

Figure 2 is a block diagram of the gun tube system with a gain Gc, feedback H, feedforward God,
and reference signal, R. Because R is a scalar the feedforward transfer function is a row vector,
i.e.

[Gdl-[G,, G12 G1 31 (8)
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Assuming that the tube rotations at the trunnions and the muzzle can be sensed, the
feedback transfer function is also a row vector, i.e.,

[H]= 1[0 G,, 0 G24] (9)

Now referring to Figure 2 the response to the disturbance for the controlled system is

G,]-I LJ L[G, .][G.D} =I [] + [Gp[GG] [H1] ton} (lOa)

or in abbreviated notation

[d] {D}= [q] {OD } (10b)

The final step in these manipulations is to solve for the response to the disturbance, which is

1

{0D}= [q]-' [d] {D} = [r]T [d] {D} (10c)
detllq]

where [r] is the matrix of the cofactors of [q].

The matrices [r]w and [d] are given in Appendix F. It is interesting to note that [d]
contains only the feedforward transfer functions G11, G12, and G 13, while [r] and det [q] contain
only the feedback transfer functions, G22, and G 24 .

DISTURBANCE REJECTION

Referring to Appendix F the expanded version of Equation (10c) is

(S) r1I 1  0 rO 1d i d12 d13 1 0
I1s 0 22 0 42 21 d22 d23 S',() (1d02(s) det[q] 0 r 333 l43d d32 d 33 o 0(s) d

03(S)][ r24  0 r4 d 4 1 d 4 2 d 4 3

0 ID 0 443 t3  r 4 1 42  433 J (s

where
det[q] = 1 + B2, G, G2 2 + B41 , GG 24  (11)

To completely remove the effect of the disturbances on 03(s)D requires that

96



r24 d 21 + r44 d 41 = 0, (12a)

r24 d 2 2 + r44 d 4 2 = 0, (12b)

r,_4 d2 3 + r44 d43 = 0, (12c)

and
det[q] # 0 (12d)

One way to accomplish this is to let G22 " 0 so that

r24 --B41 G, G22 = 0 (13)

and then choose

d4 l = B42 - B41 G, G11 = 0, (14a)

d 42 =/B 43 - B41 G, G12 = 0, (14b)

d 43 = B44 - B 4 1 G, G1 3 = 0 (14c)

so that

det[q] = 1 + B41 G, G24 = r = r2 = r33, (14d)

and

r44 =1r2 = r 1 23 = r2 = 0 (15)

The effect of this choice on the disturbance transfer function is

i 0 r, dll d12 d13
1[0 r2 0 r42 dld2 d22 d(3

det[q] [r]T [d] -10 r , (16)de ]rl 1 0 0 r33 r43 d 1 d32 d33

0 0 0 r44 0 0

An alternative strategy is to let r44 = 1 + B 2 1 GG 22 = 0, and then choose d 2 1 = d22 d23
0 so that det [q] = B41 Gc G 24 = r11 = r33 . However, in the end the resulting disturbance transfer
function is the same as created by Eq (16).
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Since the fourth column of [r]T is eliminated by the matrix multiplication and det[q] = rI = r22 =133, det[q] will be eliminated from the transformation.

IMPLEMENTATION

This analysis of the three-segment model indicates that model muzzle element can be
stabilized by properly selecting the feedforward and feedback transfer functions. This is contrary
to the finding for the lower order two-segment model [1]. Although the three-segment model
only approximates the real tube, the results of this model are encouraging with respect to real
tubes.

In order to achieve muzzle stabilization the breech-end of the gun must be actuated.
Segments I and 2 will also rotate. These motions are determined by Equations (14) and
Equation (16). All of the elements of [d] can be written in terms of the elements of [B].
Because [r]T acts like an identity matrix, the product [r]T [d] is quite simple. If the process is
carried a step further the result can be put in terms of the elements of [C] with startling results,
i.e., d 22 = d 2 3 = d 3 2 = d 3 3 = 0, and only dI = d 12 = d13= d21, and d3i are non-zero. The surviving
elements are

ril det[a]((C 4 C31 - C 1 1C 34 ) 132 + (C 14 C41 - C1 C44) 42 ) (17a)

d•- C,4 det[a]((1CzC C4Iz+C44-,C)4_ 1b

d- C4 det[a]((C14 C32 -C12 C34)32 +(14 C 42 -C12 •)12) (17b)

dl, 1 C3 1 3 C34 )132 +(C' 4c4 - c2C4)2 (7c
C14 det[a] ((C14 3  cc1 3 2"i 2  1c

d12 = (C'4•C,,C24)I23 (17d)
C14 det[a]

d 13_ 1 (C 14 C-l -C 1 C 2 4 ) 124 (17e)C,4 det[a] -

These transfer functions relate the disturbances to the responses. All of the C's are of
order s4 with the exception of Cl, which is of order s6. Since there is no restraining torsional
spring connecting the tube to the mount in the model s = 0 is a root of det[a]. Removing this
rigid body factor from det[a] reduces it to order s5.

TUBE MODEL PARAMETERS

The feedforward transfer functions depend on the length and mass properties of the
segments, the torsional stiffness of the joining springs, and the torsional damping coefficients.
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These are chosen so that the actual cantilever and pin-free mode shapes and natural frequencies
are matched as closely as possible [3]. To simplify the matching process it is assumed that the
damping is negligible. The first estimate of the segment lengths can be obtained by "fitting" the
straight-line segments to the mode shapes obtained from a finite element model of the tube or
other modal analyses. This fitting is best done by graphically overlaying the segments on plots
of the mode shapes to estimate the segment lengths. The calculation of the mass properties of
the segments can then be performed and these, along with the modal frequencies, inserted into
the characteristic equations. The characteristic equations will then contain only the torsional
stiffnesses as unknowns. The cantilever and pin-free equations are both quadratic so that the
stiffness coefficients can be found directly. The degree of matching is determined by how close
the cantilever and pin-free stiffnesses agree.

The characteristic equations for the cantilever and pin-free segments are given in
Appendix G. Although the pin-free equation appears to be sixth-order it has a double root that is
zero. The calculations for this trial-and-success process are easily implemented on a spreadsheet.

The XM291 tank gun was chosen for modeling because its mode shapes and frequencies
were available from an existing, validated analytical model. Matching the stiffnesses proved to
be surprisingly easy, requiring only modest adjustments to the first estimates of the segment
lengths. Since all their frequencies (cantilever: 97.4 Hz, 40.35 Hz; pin-free: 25.08 Hz, 81.59
Hz) were inserted into the characteristic equations, they are matched exactly. The torsional
stiffness for the pinned-free and cantilever modes were matched within 2% using the lengths 11 =
6.0 ft, 12 = 5.5 ft and 13 = 6.0 ft. From this process the model torsional stiffness' k12 = 3.6(106) lb
ft/rad and k23 = 1.69(106) lb ft/rad. were obtained

Dynamic analyses, [2], [3] have successfully modeled tube response using proportional
damping, i.e. [c] = P3[k]. In the case of the XM291 P3 = 0.0015 sec has been found to be
reasonable. A reasonable estimate for trunnion damping is cP = 750 lb ft s/rad.

The first attempt to determine the feedforward transfer function using Equations (12) and
(13) failed because the some of the roots of B 4 1 were positive. This difficulty was eliminated by
using the alternative strategy described above, with the following results.

r, = 1 + B21G, G22 = 0 (18)

G,. G1 = B22  (19a)
B 2 1

G, G12 - B2 3  (19b)
B21

G,. G13 = B24  (19c)
B 2 1
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The det [a] plays no role in these functions because it is canceled by ratioing the B's. Figures 3
and 4 show the Bode plots of Gc G11 and G, G12. The transfer function G, G 13 is zero so that Op is
not fed forward. The numerators and denominators are all fifth order polynomials, so that the
high and low frequency gains are bounded.

The feedback transfer function, Gc G22, is shown in Figure 5. The remaining feedback
transfer function, Gc G24 plays no role in disturbance rejection in this case.

The elements of d22, d23, d32, and d 33 of [d] were found to be identically zero. The
remaining no-zero elements of Equation (10d) and (16) yield the following response equations:

x,, =dil s2 y,(s) + d12 sOp(s) + d13 Op(s) (20a)

01 =dz1 s V, (s) (20b)

0, = d 31s 2 y, (s) (20c)

Figures 6 through 10 show the transfer functions required by the equations above.
Figures 9 and 10 show that affect of the trunnion acceleration on 01 and 02 is highly attenuated so
that large angular displacements of the tube are not required to achieve stabilization.

Figures 6 through 8 are quite similar. It appears that the required x, will depend largely
on the trunnion acceleration and pitch rate at very low frequencies. There is a considerable
attenuation of the disturbance inputs up to 100 rad/sec (-15 Hz) with a return to the low
frequency levels at 103 rad/sec (160 Hz).

CONCLUSIONS

It appears that the results previously obtained with the two-segment model, [1], led to the
erroneous conclusion that the effects of the disturbance could not be entirely repeated from the
muzzle angular displacement. The analysis of the three-segment model presented suggests that
this is possible, at least theoretically. Of course the unanswered question is "what would be
revealed by a higher order multi-segmented model, and how many segments are enough."

On the practical side, it is certain that the transfer functions cannot be duplicated
precisely. There are four of these that must be implemented with reasonable fidelity to achieve
the predicted results of the three-segment model. That number, along with their input signals,
indicates the magnitude of the task. While feedforward and feedback control has long been used
in fire control it is hoped that this paper provides some guidance in their use when tube flexure is
a consideration.

NOMENCLATURE

[a] - dynamic matrix
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[B] = [C] [I]

[c] = damping matrix

C12, c23 = damping coefficients

C= trunnion viscous friction coefficient

[C] = cofactor matrix of [a]

[d] = disturbance input matrix

{D} = disturbance vector

F= elevation actuating force

G, scalar gain

Gcd = feedforward transfer function vector

Gd = disturbance transfer function

Gp= plant transfer function

Gi 1, G12, G13 = feedforward transfer function vector components

G22, G24 = feedback transfer function vector components

H = feedback transfer function vector

[I] = forcing function matrix

[k] = stiffness matrix

k12, k_13 = stiffness coefficients

kd = drive line stiffness

I1, 12, 13 = segment lengths

[m] - mass matrix

[q] = disturbance response matrix

x, = elevation actuator displacement
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Xtp = distance from trunnions to drive

y, = vertical displacement of the trunnion

[r] = cofactor matrix of [q]

13 = proportional damping coefficient

ql1, •12, 7I3 = center of mass coordinates
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APPENDIX A

Min =1+ Mi?1 2 +l1 2(M2 +inMO

-m22 =12+ 22 + m31

io l mi1 2  inl 3  2

[ml= m2 1  m2 2  M 2 3  33 i3 + 3

m31 m 32 m33 m 12 = M2 1 = mA21r1 2 + m31l112
m13 = m3 1 = mi311q3

m 2 3 = m 32 = m 3 12773

[C 12  - C12  0

[c]= C12 c2 + C23  -C 23

0 -c3 -23

[k]= -C1 2 k 12C+ k23 - k23

0 - k23 k23

APPENDIX B

[M, M22M23 ; Cý 12 C2 -23] ;[k= [k 12 + k, 3  -k 23 ]

[32 m33 +C23 C23 _23

APPENDIX C

a~l a12  0 0]
[a], a 1 a22 a23 a, 4  a a,, -k r

0 a 3 2  a 33  a 34  = a2  M1 3S 2

[ 0 a 4 2 a 43 a 44 j a 2 4 =a 4 2 =in 3 s2

a22 =mils 2 + (C12 + clp)s + (kdXq, 2 + k 12 )

a 23 = a 32 = m 12S -- c 12 s - k 12

a33 = m22s2 + (c12 + c23 )s + (k12 + k, 3)

a 34 = a 43 = m 23 s2 - c 2 3s - k,3

a 44 = m 3 3s2 + c 23s + k 2 3
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122 -(r7imi + lIm 2 + lm 3 )

123 Clp

0 12 1,3 124 11=1.0 12 kd Xtp 2[I = 0 132 0 0o 114 = -kd X lp 1 2 -72M, 2 3

40 142 0 0 32 -(17m3 + 12m3 )

APPENDIX D

[If C12 C-13 C14 1
_C C2 22 C23 C234

C 31  C32 C33 C34

[C41 C42 C43 C44

Cll = a 2 2 a 3 3 a 44 + 2a 2 3 a 34 a 24 - (a 2 4 a 33 a 42 + a 43a 34 a22 + a2 3 a 32 a 44 )

C22 = all (a 3 3 a 44 - a 34 a 4 3 )

C33 = a11 (a 22a 44 - a 24 a 42 )

C44 = a1 I(a 22 a 33 - a 23 a 32 ) - a,2a~la33

C12 = C21 = -a 21 (a 33 a 44 - a 34 a 43 )

C13 C31 = a,, (a 33 a4 - a 34 a 42 )

C14 C41 = -a 21 (a 3 2 a 43 - a 33 a 42 )

C23 = C32 = -a 11 (a 32 a 44 - a 34 a 4 2 )

C24 =(C42 =a,, (a 32a 43 - a 33a4 2 )

(234 C 43 - -a,, (a,,a 43 - a_3a42 ) + a,2a2443

det[a] = a,, (a 22a33a44 + a-3a 34a 42 + a 32a 43a 24 )

- a, (a 24a33a42 + a 34a 43a22 + a,3a 32a44 ) - a12a21 (a33a44 - a 34a 43 )

APPENDIX E

B B12  B13  B14

[B][B21 B, B 23  B 24

B 31  B32 Ba33  B 34

B41 B42 B43 B44
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Bil-- C,,11, /getla]
B12 = (C'1 2 + C31132 + C4 ,142)/det[a]
B 13 = (C21123)/det[a]

B 1 4 = (Cl A 4 +C.,1 24)/det[a]

B2,+ (Cl21,,)/det[a]

B22 = (C22 22 +C32132 + C42_42 )/det[a]

B23 = (C22 123 )/det[a]
B,4 = (C1 211 4 + C22 24)/det[a]

B31 = (C,3I,,)/det[a]

B32 = (C23122 + C33132 + C43142 )/det[a]

B33 = (C23 233)/det[a]

B34 = (C1 3,1 4 + C,3124 )/det[a]

B41 = (C14 111 )/det[a]
B42 = (C24122 + C34 132 +C 44 142)/det[a]
B43 = (C24123 )/det[a]
.B44 = (C14, 14 + C2,4 24 )/det[a]

APPENDIX F

21 0 r41

[ 0 r2 0 r42
r1 0 r -23 r3 3 r43

0 r.24 0 ra

Il = det[a] = 1 + BIGcG,, + B4IGG,4  r33 = rII
rzl = -BIIGcG22 r4 1 = -B GcG24

412 =1+BalGcG24 r42 = -B21Gc24
r23 = -B 31GG 22  r43 = -B31GcG24

r24 = -B41GcG22 r44r=I+B2 ,GcG2 2

105



d 1 d12 d13

[d= dld 2  f2-3  d11 =B12 -BHGcGH
d3l d32 d33 d2 l =B,2 -B 2 ,GGc G,
dl d42 d43 d3l =B32 _B31GcG i

d12 = B13 - BIIGcG12 d 41 =B 42 -B 4lGcG1 l
d 22 =B 2 3 -B, 1 GGG12 d13 =B 14 -BiGcG13
d 32 = B33 - B31GcG 12  d23 =B 2 4 - B21 Gc@G3

d42 =B43 -B411GcG2 d33 =B34 -B3,GI3
d 43 =B 44 -B 41 GcG] 3

APPENDIX G

z = a,_ = first two natural firequencies
kz3 - [(m + wmmtu -2inn 32) /(m33 + 2m 23 + M2in*23

+ 13 (m•z X•m2 2m 33 -n- 3 rn3, )/(mn33 + 2m, 3 + m 22 )= 0

1= (,U 2 XM22 22m33 -mrn,)m,) -(mn3 + 2m23 +m3)k 2 /m 33
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